Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors.

We have fabricated suspended few-layer (1-3 layers) graphene nanoribbon field-effect transistors from unzipped multi-wall carbon nanotubes. Electrical transport measurements show that current annealing effectively removes the impurities on the suspended graphene nanoribbons, uncovering the intrinsic ambipolar transfer characteristic of graphene. Further increasing the annealing current creates ...

متن کامل

Non-Linear Temperature Dependence in Graphene Nanoribbon Tunneling Transistors

It is usually assumed that tunneling current is fairly independent of temperature. By performing an atomistic transport simulation, we show, to the contrary, that the subthreshold tunneling current in a graphene nanoribbon (GNR) band-to-band tunneling transistor (TFET) should show significant and nonlinear temperature dependence. Furthermore, the nature of this non-linearity changes as a functi...

متن کامل

New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used a...

متن کامل

Graphene field-effect transistors as room-temperature terahertz detectors.

The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very pro...

متن کامل

A computational study of ballistic graphene nanoribbon field effect transistors

A self-consistent solution of Schrödinger equation based on Green’s function formalism coupled to a two-dimensional Poisson’s equation for treating the electrostatics of the device is used to simulate and model the ballistic performance of an armchair edged GNRFET. Our results take into account interactions of third nearest neighbors, as well as relaxation of carbon–carbon bonds in the edges of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: npj 2D Materials and Applications

سال: 2019

ISSN: 2397-7132

DOI: 10.1038/s41699-019-0127-1